Modifying candle soot with FeP nanoparticles into high-performance and cost-effective catalysts for the electrocatalytic hydrogen evolution reaction.

نویسندگان

  • Zhe Zhang
  • Jinhui Hao
  • Wenshu Yang
  • Baoping Lu
  • Jilin Tang
چکیده

Developing inexpensive and highly efficient non-precious-metal electrocatalysts has been proposed as a promising alternative to platinum-based catalysts for the hydrogen evolution reaction (HER). Herein, we report novel FeP NPs supported on inexpensive and available candle soot (FeP-CS) derived from Fe3O4-CS hybrid precursors obtained after a phosphidation reaction. As HER electrocatalysts, the FeP-CS hybrids exhibit high electrocatalytic ability for HER with a Tafel slope of 58 mV dec(-1), a low onset overpotential of 38 mV, a large exchange current density of 2.2 × 10(-1) mA cm(-2) and an overpotential of 112 mV to obtain a current of 10 mA cm(-2). The present work shows significant advance in designing and developing non-precious-metal electrocatalysts for hydrogen evolution reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Ni-P-CeO2 electrode and study on electrocatalytic properties for hydrogen evolution reaction

In this study ternary Ni-P-CeO2 catalysts were first synthesized by the Co-electrodeposition method on a copper substrate and then characterized by means of microstructural and electrochemical techniques toward a hydrogen evolution reaction (HER). Also, for comparison other catalysts such as Ni-CeO2, Ni-P, and Ni were prepared and characterized by the same methods. The microstructure of the inv...

متن کامل

Computational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution

Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...

متن کامل

Atomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted Porous NiO Nanowires

Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity i...

متن کامل

In situ activation of a Ni catalyst with Mo ion for hydrogen evolution reaction in alkaline solution

In this study Ni catalyst have been activated during hydrogen evolution reaction (HER) by adding Mo ions into the alkaline electrolyte. After dissolving different amounts of ammonium molybdate in the 1M NaOH as electrolyte, Ni catalyst was used as cathode for HER. Afterwards a comparison between hydrogen overpotential measured in Ni catalyst with and without in situ activation has been made; th...

متن کامل

Ni@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media

Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 10  شماره 

صفحات  -

تاریخ انتشار 2015